
	

	

	

	
Easylib	–	The	library	for	Stip	Easy	Image	
	

Manual	
	
	 	

Introduction	
	
The	library	package	which	gets	installed	in	the	joomla	folder	‘libraries’	consist	of	the	
following	elements:	

1. a	form	fieldtype	called	‘upload’,	containing	the	form	element	for	Stip	Easy	Image	
2. two	classes	for	programmatically	interacting	with	Stip	Easy	Image:	

- StipEasyImage:	handles	resizing	and	saving	of	uploaded	files	
- StipEasyimageFormHelper	

	
Apart	from	that	the	library	makes	use	of	the	vendor	package	‘Intervention/Image’	for	
manipulating	images.	In	the	media	folder	you	find	the	assets	of	the	library.	
	

1.	Fieldtype	‘upload’	
	
To	implement	a	Stip	EasyImage	in	a	form	you	can	add	the	fieldtype	to	your	xml	form:	
	
type="upload"	
	
addfieldpath	=	"libraries/easylib/forms/fields"	–	required	to	link	to	the	form	field	
	
name	–	required,	name	of	the	input	field	for	storing	the	path	in	the	database	
	
ajaxurl	–	required,	url	for	ajax	storing	of	a	new	image.	For	a	module	or	plugin	it	would	
look	something	like:	
"index.php?option=com_ajax&module	=[module]&format=json"	
So	handling	of	the	ajax	request	should	be	done	in	your	own	module,	component,	plugin.	
The	library	however	has	a	helper	function	which	makes	ajax	handling	very	easy.	
	
label	–	required,	label	of	the	form	element	
	
description	–	optional	description	
	
show_select	–	[0/1]	whether	or	not	to	show	the	select	button	for	selecting	an	image	
from	the	images/	folder.	Defaults	to	zero.	
	
allow_upscale	–	[0/1]	whether	or	not	to		allow	too	small	images	to	be	scaled	up	to	the	
selected	size.	Defaults	to	zero.	
	
accept	–	Which	image	types	to	allow.	Formatted	for	use	in	the	accept	param	of	an	input	
of	type	‘file’.	Defaults	to	"image/*"	
	
copy_to	–	optional	pointer	to	the	id	of	another	input	field.	When	set	the	file-path	will	
also	be	set	to	that	field	on	changing	/	uploading	the	Easy	Image.	This	could	come	in	
handy	if	for	instance	you	want	to	use	the	Easy	Image	as	intro	image	as	well	as	for	the	full	
article.	
	 	

	
The	field	requires	at	least	on	child	element	of	type	‘size’.	
So:	
<field	type=”upload”>	
	 <size/>	
	 <size/>	
	 …	
</field>	
	
The	size	element	can	have	the	following	parameters:	
	
width	–	(int)	preferred	width	of	the	image	in	pixels.	Optional,	defaults	to	0.	
	
height	-	(int)	preferred	height	of	the	image	in	pixels.	Optional,	defaults	to	0.	
	
folder	–	required,	path	to	the	folder	in	‘images’	
	
name	–	name	of	this	size-setting	for	display	to	the	user	
	
cancrop	–	[0/1]	optional.	Whether	or	not	a	user	can	crop	his/her	uploaded	image.	By	
default	it	is	allowed	when	a	width	and	height	is	set.	
	
autopopup	–	[0/1]	optional.	Setting	this	to	1	the	crop	window	will	immediately	pop	up	
after	uploading	an	image	when	cropping	is	allowed.	

2a.	Class	StipEasyImage	
	
With	this	class	you	can	save	any	image	file	to	the	given	size	properties.	
	
$easyImg	=	new	StipEasyImage($file,	“feedback	name”	[,	‘jpg’]);	
$feedback	=	$easyImg->saveImage(width,	height,	name,	path,	quality);	
//	name	=	name	to	save	the	file	to	
//	path	=	path	to	the	folder	to	store	the	file	in	
//quality	=	quality	of	the	image,	the	higher	the	bigger	the	filesize	
	
if($feedback[‘succes’]){	
	 //this	is	the	file	
	 echo	$feedback[‘filename’];	
}	else	{	
	 //this	is	the	error	
	 echo	$feedback[‘error’];	
}	
	
You	can	use	any	source	type	for	$file	that	gets	accepted	by	Intervention/Image:	
http://image.intervention.io/api/make	
	
Most	of	the	times	you	won’t	need	to	call	this	class	yourself.	Just	use	the	helper	method	
for	it	in	the	StipEasyimageFormHelper.	
	 	

2b.	Class	StipEasyimageFormHelper	
	
This	class	actually	does	two	things:	

I. manipulate	an	existing	JForm	
II. handle	the	ajax	request	from	the	EasyImage	

	
ad	I.	Manipulating	an	existing	JForm	
	
This	is	useful	within	a	plugin	to	change	existing	media	fields	in	a	given	JForm	to	
EasyImage	fields.	
	
An	extract	from	the	EasyImagePlugin:	
	
public	function	onContentPrepareForm($form,	$data){	
	

if	(!($form	instanceof	JForm))	
						{	
										$this->_subject->setError('JERROR_NOT_A_FORM');	
										return	false;	
						}	
	
	 //filter	the	right	form	

$name	=	$form->getName();	
if	(!in_array($name,	array('com_content.article')))	

						{	
										return	true;	

}	
	
	 //array	of	fieldnames	to	hide	in	the	form	

$hide_fields	=	['image_intro',	'spacer1',	'float_intro'];	
	
//array	of	fields	to	change	in	the	form	
//fieldname	=>	[array	of	new	assets	in	the	field]	
//view	fieldtype	‘upload’	above	for	all	possible	features	
//you	do	not	need	to	set	the	fieldtype	of	path	here		

						$change_fields	=	[
'image_fulltext'	=>	[

													 'label'	=>		
	 	 	 	 JText::_("PLG_CONTENT_STIPEASYIMAGE_IMAGE_LABEL"),	

'sizes'	=>	$sizes,	//array	of	sizes	–	see	chapter	1	
'show_select'	=>	$params->get('show_select'),	
'allow_upscale'	=>	(int)	$params->get('allow_upscale'),	
'copy_to'	=>	'jform_images_image_intro'	

]	
];	
	

$ajax_url	=	"index.php?option=com_ajax&plugin=stipeasyimage	
&group=content&format=json";	

	
$easyForm	=	new	StipEasyimageFormHelper();	

						$easyForm->setFormFields($form,	$data,	$with_select,	$ajax_url,		
	 	 	 	 	 	 	 $change_fields,	$hide_fields);	
}	
	

As	you	can	see	in	$change_fields	‘sizes’	are	now	set	using	an	array.	
All	params	of	<size>	in	the	xml	of	chapter	1	apply	here	as	well:	
	
$sizes[]	=	[

'name'	=>	$format->naam,	
						'param_key'	=>	$key,	
						'width'	=>	$width,	
						'height'	=>	$height,	
						'cancrop'	=>	$cancrop,	
						'folder'	=>	$folder,	
						'autopopup'	=>	$autopopup	
];	
	
That’s	all	there	is	to	it!	
	
	
	
Ad	II.	handle	the	ajax	request	from	the	EasyImage	
	
Ajax	requests	from	the	Stip	EasyImages	in	your	form	can	be	handled	like	so:	
	
function	onAjaxStipeasyimage()	
{	
						return	StipEasyimageFormHelper::processAjax((int)	$this->params	

->get('quality'));	
}	
	
So	all	you	have	to	do	is	call	the	static	function	processAjax()	with	an	optional	quality	
setting	and	return	it	and	you’re	done.	

